Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biogenic methanol and its impacts on tropospheric oxidants

Identifieur interne : 000190 ( PascalFrancis/Corpus ); précédent : 000189; suivant : 000191

Biogenic methanol and its impacts on tropospheric oxidants

Auteurs : XUEXI TIE ; Alex Guenther ; Elisabeth Holland

Source :

RBID : Pascal:04-0267154

Descripteurs français

English descriptors

Abstract

[1] We use a global chemical transport model (MOZART-2) to estimate the effects of surface emissions of methanol on tropospheric oxidants. The importance of methanol in tropospheric chemistry is two fold. First, methanol has a relatively large surface emission with an estimated global emission of 70 to 350 Tg methanol/year. The estimated methanol flux is comparable to other major hydrocarbon surface emissions such as isoprene and total monoterpenes, but the chemical lifetime of methanol is several days (in the boundary layer) to a few weeks (in the upper troposphere), which is much longer than the chemical lifetime of isoprene or monoterpenes (For example, the chemical lifetime of isoprene is about 2 hours). With a surface emission of 104 to 312 Tg methanol/year (encompasses estimated uncertainty in methanol emissions), the calculation shows that on average, the inclusion of methanol emission produces approximately 1-2% increase in O3, 1-3% decrease in OH, 3-5% increase in HO2, and 3-9% increase in CH2O globally. The maximum perturbation to the oxidants occurs in the tropical upper troposphere. However, the uncertainty associated with current methanol emission estimates produces significantly different model predictions of tropospheric oxidant distributions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0094-8276
A02 01      @0 GPRLAJ
A03   1    @0 Geophys. res. lett.
A05       @2 30
A06       @2 17
A08 01  1  ENG  @1 Biogenic methanol and its impacts on tropospheric oxidants
A11 01  1    @1 XUEXI TIE
A11 02  1    @1 GUENTHER (Alex)
A11 03  1    @1 HOLLAND (Elisabeth)
A14 01      @1 National Center for Atmospheric Research (NCAR) @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @2 ASC3.1-ASC3.4
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 16687 @5 354000113319650030
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 13 ref.
A47 01  1    @0 04-0267154
A60       @1 P
A61       @0 A
A64 01  1    @0 Geophysical research letters
A66 01      @0 USA
C01 01    ENG  @0 [1] We use a global chemical transport model (MOZART-2) to estimate the effects of surface emissions of methanol on tropospheric oxidants. The importance of methanol in tropospheric chemistry is two fold. First, methanol has a relatively large surface emission with an estimated global emission of 70 to 350 Tg methanol/year. The estimated methanol flux is comparable to other major hydrocarbon surface emissions such as isoprene and total monoterpenes, but the chemical lifetime of methanol is several days (in the boundary layer) to a few weeks (in the upper troposphere), which is much longer than the chemical lifetime of isoprene or monoterpenes (For example, the chemical lifetime of isoprene is about 2 hours). With a surface emission of 104 to 312 Tg methanol/year (encompasses estimated uncertainty in methanol emissions), the calculation shows that on average, the inclusion of methanol emission produces approximately 1-2% increase in O3, 1-3% decrease in OH, 3-5% increase in HO2, and 3-9% increase in CH2O globally. The maximum perturbation to the oxidants occurs in the tropical upper troposphere. However, the uncertainty associated with current methanol emission estimates produces significantly different model predictions of tropospheric oxidant distributions.
C02 01  2    @0 220
C02 02  3    @0 001E
C03 01  X  FRE  @0 Méthanol @2 NK @2 FX @5 26
C03 01  X  ENG  @0 Methanol @2 NK @2 FX @5 26
C03 01  X  SPA  @0 Metanol @2 NK @2 FX @5 26
C03 02  2  FRE  @0 Troposphère @5 27
C03 02  2  ENG  @0 troposphere @5 27
C03 03  X  FRE  @0 Oxydant @5 28
C03 03  X  ENG  @0 Oxidant @5 28
C03 03  X  SPA  @0 Oxidante @5 28
C03 04  2  FRE  @0 Monde @5 29
C03 04  2  ENG  @0 global @5 29
C03 04  2  SPA  @0 Mundo @5 29
C03 05  2  FRE  @0 Transport @5 30
C03 05  2  ENG  @0 transport @5 30
C03 05  2  SPA  @0 Transporte @5 30
C03 06  X  FRE  @0 Modèle prévision @5 31
C03 06  X  ENG  @0 Forecast model @5 31
C03 06  X  SPA  @0 Modelo previsión @5 31
C03 07  2  FRE  @0 Pli @5 32
C03 07  2  ENG  @0 folds @5 32
C03 07  2  SPA  @0 Pliegue @5 32
C03 08  2  FRE  @0 Hydrocarbure @5 33
C03 08  2  ENG  @0 hydrocarbons @5 33
C03 08  2  SPA  @0 Hidrocarburo @5 33
C03 09  X  FRE  @0 Isoprène @2 NK @5 34
C03 09  X  ENG  @0 Isoprene @2 NK @5 34
C03 09  X  SPA  @0 Isopreno @2 NK @5 34
C03 10  X  FRE  @0 Monoterpène @5 35
C03 10  X  ENG  @0 Monoterpene @5 35
C03 10  X  SPA  @0 Monoterpeno @5 35
C03 11  X  FRE  @0 Durée vie @5 36
C03 11  X  ENG  @0 Lifetime @5 36
C03 11  X  SPA  @0 Tiempo vida @5 36
C03 12  2  FRE  @0 Couche limite @5 37
C03 12  2  ENG  @0 boundary layer @5 37
C03 12  2  SPA  @0 Capa límite @5 37
C03 13  X  FRE  @0 Incertitude @5 38
C03 13  X  ENG  @0 Uncertainty @5 38
C03 13  X  SPA  @0 Incertidumbre @5 38
C03 14  2  FRE  @0 Inclusion @5 39
C03 14  2  ENG  @0 inclusions @5 39
C03 14  2  SPA  @0 Inclusión @5 39
C03 15  2  FRE  @0 Courant @5 40
C03 15  2  ENG  @0 currents @5 40
C03 16  2  FRE  @0 Prévision @5 41
C03 16  2  ENG  @0 prediction @5 41
C03 16  2  SPA  @0 Previsión @5 41
N21       @1 166
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 04-0267154 INIST
ET : Biogenic methanol and its impacts on tropospheric oxidants
AU : XUEXI TIE; GUENTHER (Alex); HOLLAND (Elisabeth)
AF : National Center for Atmospheric Research (NCAR)/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.)
DT : Publication en série; Niveau analytique
SO : Geophysical research letters; ISSN 0094-8276; Coden GPRLAJ; Etats-Unis; Da. 2003; Vol. 30; No. 17; ASC3.1-ASC3.4; Bibl. 13 ref.
LA : Anglais
EA : [1] We use a global chemical transport model (MOZART-2) to estimate the effects of surface emissions of methanol on tropospheric oxidants. The importance of methanol in tropospheric chemistry is two fold. First, methanol has a relatively large surface emission with an estimated global emission of 70 to 350 Tg methanol/year. The estimated methanol flux is comparable to other major hydrocarbon surface emissions such as isoprene and total monoterpenes, but the chemical lifetime of methanol is several days (in the boundary layer) to a few weeks (in the upper troposphere), which is much longer than the chemical lifetime of isoprene or monoterpenes (For example, the chemical lifetime of isoprene is about 2 hours). With a surface emission of 104 to 312 Tg methanol/year (encompasses estimated uncertainty in methanol emissions), the calculation shows that on average, the inclusion of methanol emission produces approximately 1-2% increase in O3, 1-3% decrease in OH, 3-5% increase in HO2, and 3-9% increase in CH2O globally. The maximum perturbation to the oxidants occurs in the tropical upper troposphere. However, the uncertainty associated with current methanol emission estimates produces significantly different model predictions of tropospheric oxidant distributions.
CC : 220; 001E
FD : Méthanol; Troposphère; Oxydant; Monde; Transport; Modèle prévision; Pli; Hydrocarbure; Isoprène; Monoterpène; Durée vie; Couche limite; Incertitude; Inclusion; Courant; Prévision
ED : Methanol; troposphere; Oxidant; global; transport; Forecast model; folds; hydrocarbons; Isoprene; Monoterpene; Lifetime; boundary layer; Uncertainty; inclusions; currents; prediction
SD : Metanol; Oxidante; Mundo; Transporte; Modelo previsión; Pliegue; Hidrocarburo; Isopreno; Monoterpeno; Tiempo vida; Capa límite; Incertidumbre; Inclusión; Previsión
LO : INIST-16687.354000113319650030
ID : 04-0267154

Links to Exploration step

Pascal:04-0267154

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Biogenic methanol and its impacts on tropospheric oxidants</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research (NCAR)</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guenther, Alex" sort="Guenther, Alex" uniqKey="Guenther A" first="Alex" last="Guenther">Alex Guenther</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research (NCAR)</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holland, Elisabeth" sort="Holland, Elisabeth" uniqKey="Holland E" first="Elisabeth" last="Holland">Elisabeth Holland</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research (NCAR)</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0267154</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0267154 INIST</idno>
<idno type="RBID">Pascal:04-0267154</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000190</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Biogenic methanol and its impacts on tropospheric oxidants</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research (NCAR)</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guenther, Alex" sort="Guenther, Alex" uniqKey="Guenther A" first="Alex" last="Guenther">Alex Guenther</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research (NCAR)</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holland, Elisabeth" sort="Holland, Elisabeth" uniqKey="Holland E" first="Elisabeth" last="Holland">Elisabeth Holland</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research (NCAR)</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Geophysical research letters</title>
<title level="j" type="abbreviated">Geophys. res. lett.</title>
<idno type="ISSN">0094-8276</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Geophysical research letters</title>
<title level="j" type="abbreviated">Geophys. res. lett.</title>
<idno type="ISSN">0094-8276</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Forecast model</term>
<term>Isoprene</term>
<term>Lifetime</term>
<term>Methanol</term>
<term>Monoterpene</term>
<term>Oxidant</term>
<term>Uncertainty</term>
<term>boundary layer</term>
<term>currents</term>
<term>folds</term>
<term>global</term>
<term>hydrocarbons</term>
<term>inclusions</term>
<term>prediction</term>
<term>transport</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthanol</term>
<term>Troposphère</term>
<term>Oxydant</term>
<term>Monde</term>
<term>Transport</term>
<term>Modèle prévision</term>
<term>Pli</term>
<term>Hydrocarbure</term>
<term>Isoprène</term>
<term>Monoterpène</term>
<term>Durée vie</term>
<term>Couche limite</term>
<term>Incertitude</term>
<term>Inclusion</term>
<term>Courant</term>
<term>Prévision</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] We use a global chemical transport model (MOZART-2) to estimate the effects of surface emissions of methanol on tropospheric oxidants. The importance of methanol in tropospheric chemistry is two fold. First, methanol has a relatively large surface emission with an estimated global emission of 70 to 350 Tg methanol/year. The estimated methanol flux is comparable to other major hydrocarbon surface emissions such as isoprene and total monoterpenes, but the chemical lifetime of methanol is several days (in the boundary layer) to a few weeks (in the upper troposphere), which is much longer than the chemical lifetime of isoprene or monoterpenes (For example, the chemical lifetime of isoprene is about 2 hours). With a surface emission of 104 to 312 Tg methanol/year (encompasses estimated uncertainty in methanol emissions), the calculation shows that on average, the inclusion of methanol emission produces approximately 1-2% increase in O
<sub>3</sub>
, 1-3% decrease in OH, 3-5% increase in HO
<sub>2</sub>
, and 3-9% increase in CH
<sub>2</sub>
O globally. The maximum perturbation to the oxidants occurs in the tropical upper troposphere. However, the uncertainty associated with current methanol emission estimates produces significantly different model predictions of tropospheric oxidant distributions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0094-8276</s0>
</fA01>
<fA02 i1="01">
<s0>GPRLAJ</s0>
</fA02>
<fA03 i2="1">
<s0>Geophys. res. lett.</s0>
</fA03>
<fA05>
<s2>30</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Biogenic methanol and its impacts on tropospheric oxidants</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUENTHER (Alex)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOLLAND (Elisabeth)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research (NCAR)</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>ASC3.1-ASC3.4</s2>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16687</s2>
<s5>354000113319650030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0267154</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Geophysical research letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] We use a global chemical transport model (MOZART-2) to estimate the effects of surface emissions of methanol on tropospheric oxidants. The importance of methanol in tropospheric chemistry is two fold. First, methanol has a relatively large surface emission with an estimated global emission of 70 to 350 Tg methanol/year. The estimated methanol flux is comparable to other major hydrocarbon surface emissions such as isoprene and total monoterpenes, but the chemical lifetime of methanol is several days (in the boundary layer) to a few weeks (in the upper troposphere), which is much longer than the chemical lifetime of isoprene or monoterpenes (For example, the chemical lifetime of isoprene is about 2 hours). With a surface emission of 104 to 312 Tg methanol/year (encompasses estimated uncertainty in methanol emissions), the calculation shows that on average, the inclusion of methanol emission produces approximately 1-2% increase in O
<sub>3</sub>
, 1-3% decrease in OH, 3-5% increase in HO
<sub>2</sub>
, and 3-9% increase in CH
<sub>2</sub>
O globally. The maximum perturbation to the oxidants occurs in the tropical upper troposphere. However, the uncertainty associated with current methanol emission estimates produces significantly different model predictions of tropospheric oxidant distributions.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Methanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Metanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxydant</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Oxidant</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Oxidante</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Monde</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>global</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Transport</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>transport</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle prévision</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Forecast model</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo previsión</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Pli</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>folds</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Pliegue</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Hydrocarbure</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>hydrocarbons</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Hidrocarburo</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Isoprène</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Isoprene</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Isopreno</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Monoterpène</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Monoterpene</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Monoterpeno</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Durée vie</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Lifetime</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Tiempo vida</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Couche limite</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>boundary layer</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Capa límite</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Incertitude</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Uncertainty</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Incertidumbre</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Inclusion</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>inclusions</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Inclusión</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Courant</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>currents</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Prévision</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>prediction</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Previsión</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>166</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0267154 INIST</NO>
<ET>Biogenic methanol and its impacts on tropospheric oxidants</ET>
<AU>XUEXI TIE; GUENTHER (Alex); HOLLAND (Elisabeth)</AU>
<AF>National Center for Atmospheric Research (NCAR)/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Geophysical research letters; ISSN 0094-8276; Coden GPRLAJ; Etats-Unis; Da. 2003; Vol. 30; No. 17; ASC3.1-ASC3.4; Bibl. 13 ref.</SO>
<LA>Anglais</LA>
<EA>[1] We use a global chemical transport model (MOZART-2) to estimate the effects of surface emissions of methanol on tropospheric oxidants. The importance of methanol in tropospheric chemistry is two fold. First, methanol has a relatively large surface emission with an estimated global emission of 70 to 350 Tg methanol/year. The estimated methanol flux is comparable to other major hydrocarbon surface emissions such as isoprene and total monoterpenes, but the chemical lifetime of methanol is several days (in the boundary layer) to a few weeks (in the upper troposphere), which is much longer than the chemical lifetime of isoprene or monoterpenes (For example, the chemical lifetime of isoprene is about 2 hours). With a surface emission of 104 to 312 Tg methanol/year (encompasses estimated uncertainty in methanol emissions), the calculation shows that on average, the inclusion of methanol emission produces approximately 1-2% increase in O
<sub>3</sub>
, 1-3% decrease in OH, 3-5% increase in HO
<sub>2</sub>
, and 3-9% increase in CH
<sub>2</sub>
O globally. The maximum perturbation to the oxidants occurs in the tropical upper troposphere. However, the uncertainty associated with current methanol emission estimates produces significantly different model predictions of tropospheric oxidant distributions.</EA>
<CC>220; 001E</CC>
<FD>Méthanol; Troposphère; Oxydant; Monde; Transport; Modèle prévision; Pli; Hydrocarbure; Isoprène; Monoterpène; Durée vie; Couche limite; Incertitude; Inclusion; Courant; Prévision</FD>
<ED>Methanol; troposphere; Oxidant; global; transport; Forecast model; folds; hydrocarbons; Isoprene; Monoterpene; Lifetime; boundary layer; Uncertainty; inclusions; currents; prediction</ED>
<SD>Metanol; Oxidante; Mundo; Transporte; Modelo previsión; Pliegue; Hidrocarburo; Isopreno; Monoterpeno; Tiempo vida; Capa límite; Incertidumbre; Inclusión; Previsión</SD>
<LO>INIST-16687.354000113319650030</LO>
<ID>04-0267154</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000190 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000190 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0267154
   |texte=   Biogenic methanol and its impacts on tropospheric oxidants
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023